1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
| import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import models.NLinear as DLinear
class Model(nn.Module):
def __init__(self, configs): super(Model, self).__init__() self.seq_len = configs.seq_len self.pred_len = configs.pred_len self.individual = configs.individual self.channels = configs.enc_in
self.dominance_freq=configs.cut_freq self.length_ratio = (self.seq_len + self.pred_len)/self.seq_len
if self.individual: self.freq_upsampler = nn.ModuleList() for i in range(self.channels): self.freq_upsampler.append(nn.Linear(self.dominance_freq, int(self.dominance_freq*self.length_ratio)).to(torch.cfloat))
else: self.freq_upsampler = nn.Linear(self.dominance_freq, int(self.dominance_freq*self.length_ratio)).to(torch.cfloat)
def forward(self, x): x_mean = torch.mean(x, dim=1, keepdim=True) x = x - x_mean x_var=torch.var(x, dim=1, keepdim=True)+ 1e-5 x = x / torch.sqrt(x_var)
low_specx = torch.fft.rfft(x, dim=1) low_specx[:,self.dominance_freq:]=0 low_specx = low_specx[:,0:self.dominance_freq,:] if self.individual: low_specxy_ = torch.zeros([low_specx.size(0),int(self.dominance_freq*self.length_ratio),low_specx.size(2)],dtype=low_specx.dtype).to(low_specx.device) for i in range(self.channels): low_specxy_[:,:,i]=self.freq_upsampler[i](low_specx[:,:,i].permute(0,1)).permute(0,1) else: low_specxy_ = self.freq_upsampler(low_specx.permute(0,2,1)).permute(0,2,1) low_specxy = torch.zeros([low_specxy_.size(0),int((self.seq_len+self.pred_len)/2+1),low_specxy_.size(2)],dtype=low_specxy_.dtype).to(low_specxy_.device) low_specxy[:,0:low_specxy_.size(1),:]=low_specxy_ low_xy=torch.fft.irfft(low_specxy, dim=1) low_xy=low_xy * self.length_ratio xy=(low_xy) * torch.sqrt(x_var) +x_mean return xy, low_xy* torch.sqrt(x_var)
|